July 9, 2003

SDMS Document ID 2008724

Mr. Jim Christiansen
United States Environmental Protection Agency
Region 8 Ref: 8EPR-SR
999 18th Street - Suite 300
Denver, CO 80202-2466

RE: Richardson Flat Monthly Status Report for June 2003

Dear Mr. Christiansen:

This monthly Status Report details site activities conducted at Richardson Flat for June 2003.

Sampling Activities Conducted:

Nature and extent surface water and sediment samples were collected in the wetland and pond areas (Figure 1). Six (6) surface water samples were collected on June 3, 2003. One duplicate surface water sample was collected for QA/QC purposes. Twenty sediment samples were collected on June 4, and June 5, 2003. Two duplicate sediment samples were collected for QA/QC purposes. A water elevation and flow direction survey was conducted on July 3, 2003 in the wetland area (Figure 2). These data were collected as recommended by the Biological Technical Assistance Group (BTAG). The data will be used to determine where to focus additional sampling to fulfill the data gaps identified in the Screening Ecological Risk Assessment.

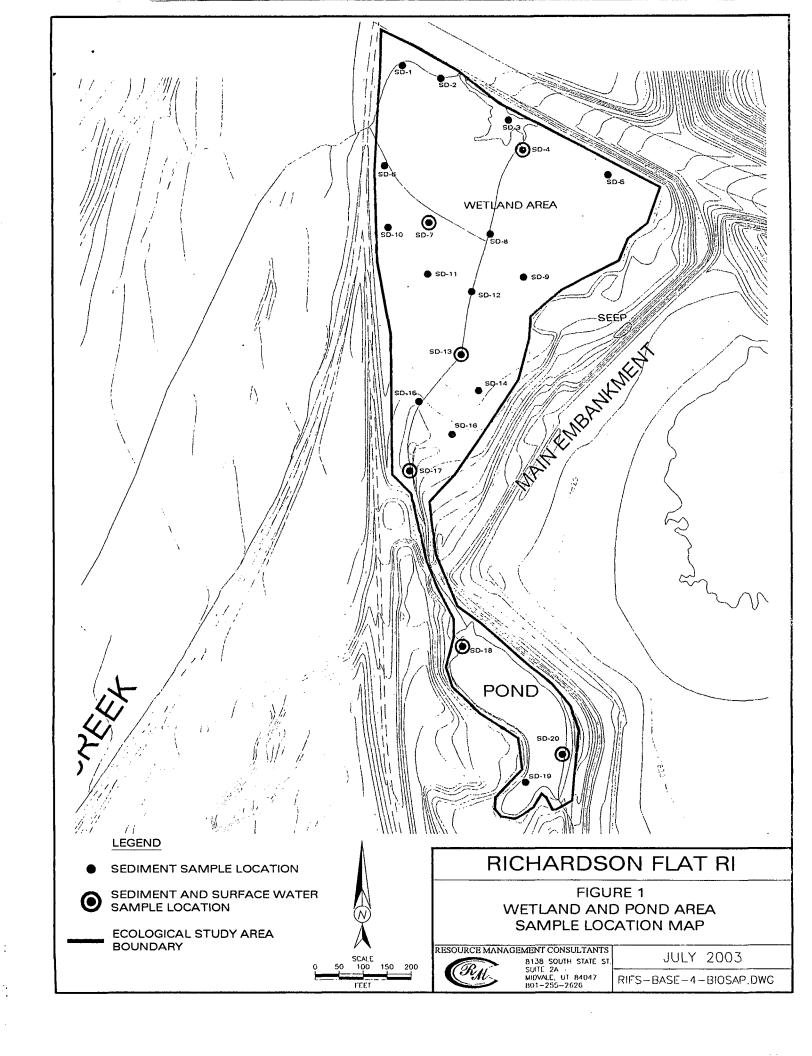
Results:

Sample locations are presented in Figure 1. Surface water sampling results are presented in Table 1. Sediment sample results are presented in Table 2. The data presented in the tables was received electronically from the laboratory, final hard copies of the laboratory reports will be submitted with a Technical Memorandum discussing the data.

Planned Activities: July 2003

RMC will continue to work on documents and field activities as required to complete all required work at the Site. Additional ecological sampling in the pond and wetland areas will begin after the nature and extent data is reviewed.

Planned Activities: August 2003


RMC will continue to work on documents and field activities as required to complete all required work at the Site.

If you should have any questions or comments, please contact me at 801-255-2626.

Best regards,

Todd Leeds RMC

Cc: Kerry Gee, Kevin Murray, Dale Hoff, Dan Wall, Christine Cline, Jeff Montera, Susan Griffin, Muhammed Slam, Lynn Woodbury, Exponent

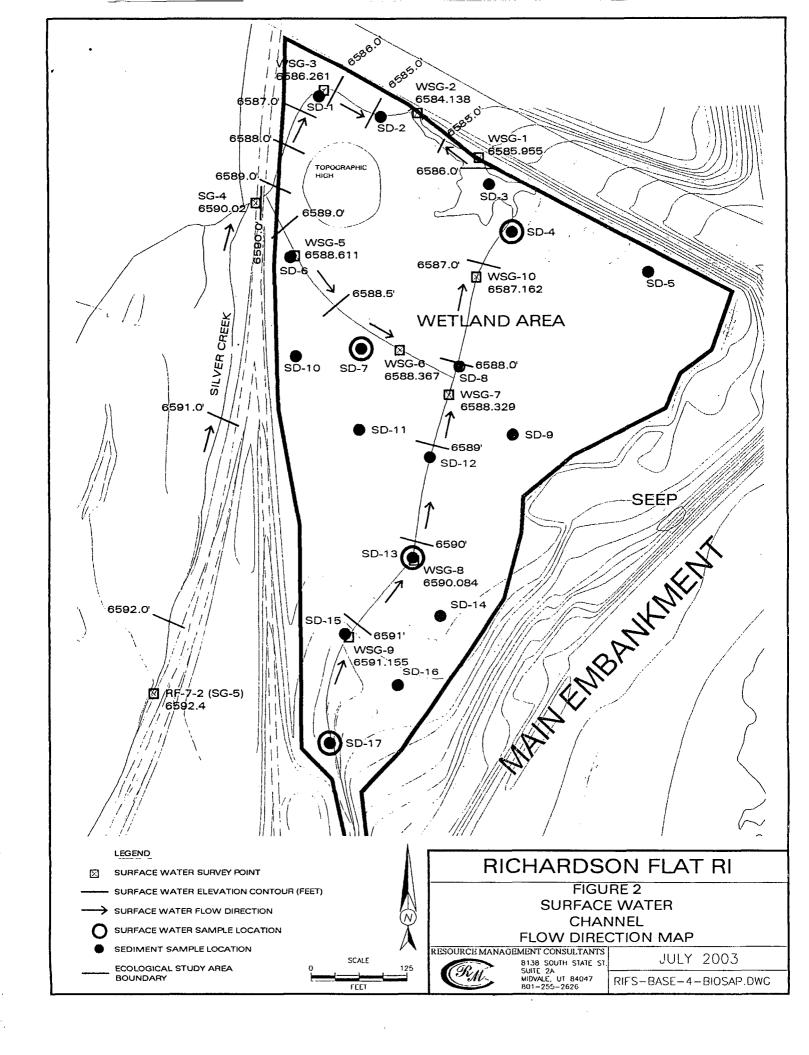


Table 2, Richardson Flat Analytical Results Summary, 2003 Wetland Area Sediment Sampling unis ppm

•	Samule #	PQ V	4	AS	A8	BE	8	8	5	3	2	2	Z	MOIST.	2	8	H	S.	SB	SE	ī	>	ZN
4-Jun-03	4-Jun-03 RFB-SED-SD01	30.5	6700	159	173	0.3	52	5	8	555	40300	3.69	2290	39.1	21	3200	6.6	8	29	9.5	4.5	5	13400
4-Jun-03	4-Jun-03 RFB-SED-SD02	30.3	11200	202	8	0.5	88	17	64	436	49900	4.74	1910	54.2	23	4800	6.5	113	59	12.1	5.8	22	14500
4-Jun-03	4-Jun-03 RFB-SED-SD03	35.3	17800	137	146	0.8	33	7	æ	457	29500	1.69	6710	69	20	2490	9.9	1359	52	6.7	8.7	×	13200
4-Jun-03	4-Jun-03 RFB-SED-SD04	56.5	15100	356	208	0.5	88	7	2	563	36000	3.62	3730	58.4	29	5280	6.5	324	72	60	Ŧ	22	9340
4-Jun-03	4-Jun-03 RFB-SED-SD504	8	15600	235	274	0.5	8	õ	27	416	37200	3.2	3900	59.1	18	3360	9.9	32	5	0	Ξ	20	9720
4-Jun-03	4-Jun-03 RFB-SED-SD05	40.6	6760	447	9	0.3	62	9.7	21	643	29900	1.36	3490	71.5	16	3920	6.7	823	109	8.2	12	_	22600
4-Jun-03	4-Jun-03 RFB-SED-SD06	4	24200	42	337	12	72	19	42	598	42100	4.02	2730	69.7	30	5240	6.7	824	99	9.8	6.5	-	12100
4-Jun-03	4-Jun-03 RFB-SED-SD07	28	12200	333	137	4.0	8	8.9	28	203	35700	1.23	3460	98.6	16	4430	7.3	1086	73	8.7	-5	92	11100
4-Jun-03	4-Jun-03 RFB-SED-SD08	31.2	11630	82	146	9.4	77	on	25	418	18800	1.3	6870	85.4	21	3520	6.9	131	103	8.6	21	-91	11000
5-Jun-03	5-Jun-03 RFB-SED-SD09	\$	15500	261	82	4.0	8	26	33	505	33200	3.84	10800	53.6	58	5650	7.2	3925	90	7.5	<2.5	22	9460
5-Jun-03	5-Jun-03 RFB-SED-SD10	\$6.3	6500	208	22	0.5	37	£.3	24	613	13900	2.06	1740	83.7	14	5860	5.8	303	169	11.9	12	ũ	6330
5-Jun-03	5-Jun-03 RFB-SED-SD11	42.3	4700	248	243	0.2	78	=	89	523	17700	3.23	2390	46.1	32	5240	6.8	1114	127	10.6	15	6	9560
S-Jun-03	5-Jun-03 RFB-SED-SD12	17.2	5530	104	35	0.2	3	12	2	218	17000	1.05	4090	34.9	24	2480	6.9	1722	45	4.8	7.1**	Ξ	7190
5-Jun-03	5-Jun-03 RFB-SED-SD13	19.1	6030	118	ş	0.7	5	11	33	218	23800	1.21	4500	24.3	6	2430	6.7	1231	43	6.8	<5.0	5	7490
5-Jun-03	5-Jun-03 RFB-SED-SD14	28.6	9090	119	28.7	0.2	8	6.6	16	724	55600	0.54	7080	76.5	6	2430	7.3	695	67	6.9	25 -	6	6580
5-Jun-03	5-Jun-03 RFB-SED-SD15	20.9	5020	118	527	0.2	×	30	99	124	21100	0.33	61500	43.3	35	1510	5.	1066	8	3.5	-20-	7	10600
5-Jun-03	S-Jun-03 RFB-SED-SD16	35.7	14500	265	90.9	4.0	52	6.6	17	327	46700	0.94	2020	71.9	5	3320	6.5	2594	26	7.5	\$ 1.	<u></u>	15600
5-Jun-03	5-Jun-03 RFB-SED-SD17	25.7	6010	55	1490	0.3	6.8	28	46	27	8480	0.05	161000	6.89	78	250	^	29	27	=	×40*	Ŧ	9150
5-Jun-03	5-Jun-03 RFB-SED-SD18	6.95	17100	8	149	0.5	7.3	12	41	145	20400	0.61	1060	35.9	75	1040	_	2165	5	2.8	42.5	2	2380
5-Jun-03	5-Jun-03 RFB-SED-SD19	10.6	12000	99	128	0.3	8.1	6	22	126	16800	0.78	625	6.99	<u> </u>	1170	-	680	28	6.7	3.7	5	2430
5-Jun-03	5-Jun-03 RFB-SED-SD5019	õ	12300	53	119	0.3	12	12	42	181	24100	1.18	818	6.95	23	1520	6.8	734	В	6,4	\$25	5	2370
S-Jun-03	S-Jun-03 RFB-SED-SD20	3.77	9460	95	148	4.0	1.7	13	28	81	20500	90.0	4880	70.2	8	455	6.9	999	δ	2.8	5.9	22	2790

Notes: Sample RFB-SED-SD504 is a duplicate of RFB-SD04 Sample RFB-SED-SD5019 is a duplicate of RFB-SD19

Table 1, Richardson Flat Analytical Results Summary, 2003 Wetland Area Surface Water Sampling

5	
Ē.	
ş	
5	

Oate Samolin #	ş	3-Jun-03 RFB-SWLSD7	3-Jun-03 RFB-SW-SD13	3-Jun-03 RFB-SWLSD17	3-Jun-03 RFB-SW-SD18	3-Jun-03 RFB-SW-SD5018 <0.005	3-Jun-03 RFB-SW-SD20
V	80.00	A0.005	40.00€	4.005	<0.00\$		40.005 A0.005
AG(D) AL	<0.005 <0.050	<0.005 0.063	<0.005 <0.050	<0.005 <0.050	<0.005 <0.050	<0.005 ←0.050	<0.005 <0.050
AL(0)	50 ⊄.050	3 <0.050	950.050	80.00	\$0.050	980.84 090.98	50 <0.050
A L K	200	<u>\$</u>	189	177	148	148	3
As AS(D)	0.006 0.007	0.006 <0.005	<0.005 <0.005	<0.005 <0.005	40.005 <0.005	<0.005 <0.005	<0.005 <0.005
6	77 <0.10	05 <0.10	05 <0.10	05 <0.10	65 <0.10	60.10	8 9.1
8(0)	<0.10	<0.10	Ф.10	40.10	6.10	40.10	40.10
BA BA	<0.10 <0	-0.10 <0.	Ø.10	å. B.	6.10	0.10	Ø.50 A.
A(D) BE	<0.10 <0.005	0.10 <0.005	40.10 <0.005	0.10 <0.005	0.10 <0.006	<0.10 <0.005	01.0
E BE(0)	005 <0.005	900 <0.005	500:0>	909 <0.005	900 -0.005	500.0> 500	200 ° -0 005
) CA(0)	207	155	05 262	25.	92 230	230	23,
CAT/A	1.2	2.5	3.6	6.4	3.2	2	5
9	<0.001	> 0.00.0	> 100:0>	<0.001	<0.001	<0.001	<0.001
CD(D) CI	-0.001 15	<0.001	1200.00	40.001	<0.001	40.001	<0.001 12
Ct.	158 <0.004	187 <0.004	128 <0.004	108 <0.004	117 <0.004	121 <0.004	127 <0.004
603	<2.0	2.0	42.0	42.0	<2.0	42.0	<2.0
CO CO(D)	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10
(D) COND.	1554	10 1401	1784	<0.10 1742	10 1874	1677	1691
C.	4 <0.010	1 <0.010	4 <0.010	2 <0.010	4 <0.010	7 <0.010	1 <0.010
CR(D)	10 <0.010	10 <0.010	10 40.010	10 <0.010	10 <0.010	10 <0.010	10 <0.010
) CR+6(D)	0 <0.005	0 4.005	10 <0.005	0 <0.005	\$00.00	20:00	0 <0.005
(a)	90.008	35 40.005	5 0.007	00:00	00.007	5 0.007	90.00
CUIDI	9 0.005	5 <0.005	0.006	90000	90000	90000	9000
	0.24	1.1	0.14	0.13	0.12	0.12	0.14
FE(D) HJ	<0.10	<0.10 5	<0.10 9	<0.10 8	<0.10 8	<0.10 8	40.10 ₽
HARD HCO3	719 200	539 180	922 186	177	830 146	834 146	71 558
E03	00 <0.0002 <0	8	189 <0.0002 <0	8	148 <0.0002 <0	148 <0.0002 <0	144 <0.0002 <0
HG(D)	02 <0.0002	0002 <0.0002	02 <0.0002	0002 <0.0002	2000 00 200	2000 0> 200	02 <0.0002
K(D)	42.0	<2.0	2.8	3.2	2.3	2.3	2.4
KUEL-M	<0.50	<0.50	<0.50	€0.50	40.50	<0.50	40.50 €
MC (O	49 0.61	37 0.91	65 2.3	63 2.2	82 1.9	6.1 63	1.9
Ĭ	0.58	0.34	2.2	2	1.8	1.8	1.8
NA (O)	65 0.24	82 <0.10	55 <0.10	54 0.12	55 40.10	58 0.14	58 <0.10
NO2	0.13	<0.10	<0.10	0.16	<0.10	<0.10	40.10
•	A.16	0.22	<0.10 <	<0.10 <	€.10 4	\$1.0>	A.13
PB PB(D)	<0.005 <0.0	0.008 <0.0	<0.005 <0.0	<0.005 <0.0	<0.005 <0.0	40.005 <0.0	0.00€ 40.0
(D)	<0.005 7.6	40.005 7.5	<0.005 7.6	<0.005 7.6	40.005 7.8	<0.005 7.5	40.005 7.6
88	<0.005	• 000 €	<0.005	<0.005	€00.0	€00.0	40.00€
88(0)	0.007	<0.005	<0.005	<0.005 <	<0.005 <	40.005	<0.006 A
SESI	<0.004 <0	€0.004 <0	<0.004 <0	<0.004 <0	-0.004 <0	40.00.	40.00.0
SE(D) SO	<0.004 47	<0.004 28	<0.004 61	×0.004 59	<0.004 58	95 700.0>	400.00
SO4= TDS	476 1141	260 839	611 1451	595 1384	583 1361	562 1353	569 1354
700	4.8 A	3.8	4.9	•	6.4	7	7.2
T38 ZN	<1.0 0.71	5.3 1.1	32 0.051	47 0.038	7.3 <0.010	5.2 <0.010	4.7 <0.010
-			11 0.023	19 0.012	10 <0.010	10 <0.010	10 <0.010

lote:

8